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Figure 4. Mass spectra of di-TFA derivatives of (A) HT-2 toxin
(+CI CH,), (B) TC-3 isomer 1 (+CI CH,), (C) TC-3 isomer 2 (+CI
CH,), and (D) TC-3 isomer 1 (+CI NH;). Note the same base
peak (M* 455) in all spectra (CH, CI) and a two proton difference
in M* + 1 of T-2 and TC-3 isomers. The +CI in ammonia helps
establish the molecular ion.

matography, one with a retention time of 11.2 min and the
other 11.5 min (Table I). The mass spectrum of HT-2 at
70 eV shows a molecular ion of 616 in electron impact and
617 in positive chemical ionization (Figure 4) with a base
peak of 455 in the latter. The TFA derivatives of TC-3
(both isomers) also show a base peak of 455 and a mo-

lecular ion at M* 615. Both isomers are dehydration
products analogous to those found in T'C-1 explained
above. The identity of the molecular ion of TC-3 is further
confirmed by the M* + 18 (632) shown in Figure 4 when
detected by chemical ionization in NH,.

Thus, the reactivity of TC-1 and TC-3 with trifluoro-
acetic acid anhydride forms isomeric dehydration products
that simplifies procedures for the detection of C-3’ hy-
droxylated products of T-2 metabolism. This characteristic
reaction has assisted us in detecting another T-2 derivative
(TC-6) that produces isomers similar to the TFA reaction
products of TC-1 and TC-3.

Registry No. III, 84474-35-1; VI, 78368-54-4; TC-1 (isomer
I), 91860-58-1; TC-1 (isomer II), 91860-59-2; TC-3 (isomer I),
91860-60-5; TC-3 (isomer II), 91860-61-6.
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Metribuzin Metabolism in Soybeans. Characterization of the Intraspecific

Differential Tolerance

Linford N. Falb! and Albert E. Smith, Jr.*

Differential tolerance of soybean [Glycine max (L.) Merr.] to [1*C]metribuzin was not due to absorption
or translocation differences but due to the rate of metabolism. After 106-h treatment by subirrigation,
the radioactivity in the susceptible cultivar “Semmes” was primarily in leaf interveinal tissue as un-
metabolized metribuzin while in the tolerant cultivar “Coker 338” the majority of the radioactivity was
in the more mature shoot tissue as polar metabolites and was restricted primarily to the vascular tissue.
Differential tolerance was attributed to at least the following factors: (a) the restriction of metribuzin
to the vascular tissue in tolerant “Coker 338” with movement mostly into the interveinal tissue in
“Semmes”, (b) the higher metribuzin concentration in “Semmes” leaves (9 ug/g of dry weight) than in
“Coker 338" leaves (3 ug/g of dry weight), and (c) the higher rate of polar product (metribuzin conjugate)

formation in “Coker 338”.

Metribuzin, 4-amino-6-tert butyl-3-(methylthio)-as-
triazin-5(4H)-one, is an asymmetrical triazine herbicide
used on soybeans. However, cultivar tolerance to metri-
buzin varies dramatically (Andersen, 1976). Intraspecific
differential tolerance is apparently due to differential rates
of metabolism (Mangeot et al., 1979; Smith and Wilkinson,
1974). Metribuzin is metabolized to polar and nonpolar
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metabolites and incorporated into the insoluble residue
(Mangeot, et al., 1979; Smith and Wilkinson, 1974). Smith
and Wilkinson (1974) reported that tolerance resulted from
metribuzin detoxification through polar conjugate forma-
tion. Mangeot et al. (1979) indicated that formation of the
6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one (DA)
nonpolar metabolite, numerous unidentified aqueous
metabolites, and incorporation into the insoluble fraction
all contributed to cultivar tolerance to metribuzin. In
tomato, the polar metabolites have been identified as the
B-D-(N-glucoside) and malonyl 8-D-(N-glucoside) conju-
gates of metribuzin (Frear et al., 1983).

The objective of this study was to characterize, more
definitively, the cause(s) of soybean intraspecific differ-
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concentration in “Semmes” leaves, and (c) the higher rate
of polar product formation in “Coker 338",

The amount of radioactivity in the residue fraction was
equal in the leaves of the two cultivars (Table II). In stems,
the level of residue radioactivity was significantly higher
in “Coker”. However, the restriction of radioactivity in
stems to the vascular strands, which have low levels of
chlorophyll and thus photosynthesis, argues against residue
incorporation as a cause of “Coker” tolerance. Further-
more, the toxiphoric group on metribuzin, the primary
amine (Draber and Buchel, 1969), is probably conjugated
or sterically hindered before incorporation into the residue.
Residue incorporation was higher in roots of “Coker”.
However, roots do not carry out photosynthesis, thus
eliminating this as a cause of differential tolerance. For
these reasons incorporation into the residue is not thought
to explain differential tolerance.

The restriction of radioactivity to the vascular tissue is
interpreted as being caused by metribuzin metabolism to
a product that will not penetrate through a membrane.
Thus “Coker” traps the products in the veins. “Semmes”
metabolizes metribuzin at a much lower rate; thus me-
tribuzin penetrates through the membranes and inhibits
photosynthesis.
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Maillard Polymers Derived from D-Glucose, D-Fructose,
5-(Hydroxymethyl)-2-furaldehyde, and Glycine and Methionine

Milton S. Feather*! and Deanna Nelson

Water soluble, nondialyzable Maillard polymers having molecular weights in excess of 16 000 were
prepared from 5-(hydroxymethyl)-2-furaldehyde (HMF), D-glucose, or D-fructose and glycine. Similar
polymers were prepared from the latter sugars and methionine. In all cases, the polymers showed no
absorption maxima in the 220-320-nm range. For the preparations derived from the latter two sugars,
elemental analyses were similar and indicated a nitrogen content of over 6%. Elemental analyses suggest
that the polymer is composed of 1 mol of sugar and 1 mol of glycine minus about 3 mol of water. Studies
using 90 atom % enriched D-glucose-1-1°C, glycine-1-13C, and glycine-2-13C as precursors in the reactions
and ®*C NMR as a probe show that both carbon atoms of glycine are incorported into the polymer and
that C-1 of D-glucose appears as a substituted methyl group. The NMR data further suggest that the
main monomeric (dialyzable) products are unreacted sugar or amino acid and 1-deoxy-1-(N-
glycino)-D-fructose derivatives (Amadori compounds).

The reaction of reducing sugars with amino acids or
protein to produce brown polymers was orginally described
by Maillard. Since that time, this reaction has been the
subject of numerous studies, and more recently several
symposia have been held on the subject (Eriksson, 1982;
Waller and Feather, 1983). Although monomeric food
flavor and aroma compounds, reductones, and ultravio-
let-absorbing compounds are known to be produced in the
reaction, the origin and constitution of the polymers are
not, at present, well understood. Barbetti and Chiappini
(1976a,b) have studied some model systems recently, as
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have Ledl and co-workers (Ledl, 1982a,b; Ledl and Severin,
1982) and Velisek and Davidek (1976a,b). More recently
(Imasato et al., 1981; Bobbio et al., 1981), reports have
appeared that describe the preparation and fractionation
of melanordins from D-glucose, D-fructose, D-xylose, and
glycine. Analytcal data, including elemental analyses and
IR and acetylation data were reported.

A knowledge of the chemical constitution of Maillard
polymers is desirable, since they are known to contribute
to the discoloration of many foods and may have an effect
on the digestibility and mineral binding properties of
processed foods.

The purpose of this report is to describe the isolation
of Maillard polymers derived from D-glucose, D-fructose,
or 5-(hydroxymethyl)-2-furaldehyde and glycine and to
report analytical data (UV, NMR, and elemental analyses)
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